Router Chain: Tendermint-based Interop Layer

Vatsal Gupta, Shubham Singh, Mankena Venkatesh
May 2023

Abstract

Over the past few years, we have witnessed web3 evolve from a novel innovation to an ethos
defining the new era of computation and digital governance. The maturity of Ethereum’s in-
frastructure and ecosystem fostered true innovation, which has paved the way for a variety of
decentralized applications. However, increased adoption by users led to scalability issues, resulting
in the emergence of multiple layerl and layer2 networks. Trilemma design trade-offs in most of
these solutions have been focused on reduced gas costs and improved throughput. While these
new networks have played an essential role in onboarding new users to the DeFi ecosystem, their
proliferation has resulted in the fragmentation of liquidity, user base, and activity across multiple
networks. Due to these factors, interoperability is no longer a luxury; it is a requirement for any
dApp seeking to capitalize on the subsequent adoption wave. Attempts have been made in the
past to solve this problem by enabling communication across chains, but their usability is limited by
a number of issues. Towards this end, this paper introduces the Router chain, an interoperability
hub built at a crucial intersection of decentralization, scalability, and security. With an architecture
enabling communication between various blockchain ecosystems - EVM & non-EVM, support for
middleware contracts and application-specific bridging logic, provision for adding custom security
measures, and a developer tooling suite facilitating continuous integration and development of
cross-chain dApps, the Router chain will catalyze the growth of the cross-chain ecosystem.

Contents

1 Introduction
1.1 Background|
1.2 A Brief History of Router V1|
[1.2.1 Router VI Validation Mechanism'.

[1.4 Organization| e

[2__Existing Solutions|
E.l Hash Time Locked Contracts (HTLCS)

2.2 Proof of Authority (PoA) Bridges|.
[2.3 TLight Client Node Approach|.
[2.4 Ultra Light Client Node with Oracle-based Bridge Adaptors|.
[25 Relays/Sidechains

|2.6 Optimistic Bridges

.7/ Existing Chain-based Approaches|

[3.2.2 Support for Middleware Contracts
[3.2.3 Router Chain as a Data Aggregation Layer|.
[3.2.4 Multilayer Security]

.....................................
3.2.6 omposability
..
[3.3.1 Generating and Sending a Cross-chain Request|
[3.3.2 Generating and Sending an Acknowledgment|

A4 rchitectural Components|. L
3.4.1 pplication Contracts|
3.4.2 Gateway Contracts|
B.43 Orchestrators]

3.4.8 Relayers|

3.5 Network Security]
3.5.1 Infrastructure-level Security|

5. Bridge-level Security|.o

3.5.3 pplication-level Security|

4 _CrossTalkl

BREEEEE B

EEEEEcw®

5 Fee Management

5. ee Payer Considerations|
B2 Gas Considerations]
5.3 Incoming Request Fee Structure|
5.4 Outgoing Request Fee Structure
Bb.b Crosslalk Fee Structurel
5.6 Other Fee Considerations
5.7 Handling Refunds|
6 Features

6.1 Cross-chain Meta Transactions|
6.2 Decentralized Cross-chain Read Requests
6.3 Additional Security Modules
6.4 Transaction Batching|o

[6.4.1 Batching at the Router Chain|.,

[6.4.2 Batching at the Destination Chain
[6.5 Batch Atomicity]
[6:6 MetaMask Compatibility]

[7_Future Work|

[7.1 Interoperability with Private Blockchains|
[7.2 Providing Instant Finality for Transactions on Optimistic Blockchains|
[7.3" Orchestrator Optimization using[MPC|
E.4 Automated Triggers/Scheduler-as-a-Service| L
[[5 _Random Number Generator]

[8_Concluding Remarks|

APP a

|A__Redelegation Mechanism for Failed Requests|

|B__Batched Cross-chain NFT Minting via the Router Chain|

Glossary

atomicity If an operation is atomic, it will either be seen as yet to be started or as completed and not
in any partially completed state. In other words, either all the sub-operations in that operation
will be successful, or none of them will be successful.

block headers The part of the block which includes all the metadata, including block height, block
hash, the Merkle root of all the transactions included in the block, and the timestamp at which
the block was mined, amongst other things. They act as a summary of the block.

blockchain trilemma The idea that finding the right balance between security, decentralization, and
scalability is very hard in a blockchain.

composability The ability to use existing components and resources as building blocks for new appli-
cations.

interoperability The ability of a system to connect and work with other systems in a coordinated
fashion while imposing no limits on the end user. In the field of blockchain, interoperability refers
to the ability of disparate blockchain systems to interact with each other.

layer 1 Base layer blockchain architecture, e.g., Bitcoin, Ethereum. In recent years, multiple layer
1 alternatives to Ethereum have come to the fore. Most of these blockchains have made cer-
tain changes to Ethereum’s existing infrastructure, like introducing sharding or implementing a
different consensus mechanism.

layer 2 Blockchain networks implemented as smart contracts on top of another blockchain (layer 1).
Layer 2 networks do not make any changes to the underlying blockchain architecture. For example,
layer 2 networks on Ethereum take advantage of Ethereum’s decentralized security model while
negating its scalability constraints by adding another layer of transactions on top of it. There are
mainly three ways in which layer 2 scaling solutions are exercised - State Channels, Plasma, and
Rollups. Popular examples of layer 2 blockchains include Polygon, Optimism, and Arbitrum.

Merkle root The hash of all the hashes of all the transactions included in a block. It is part of the
block header.

multisig A special type of digital signature that requires two or more users to sign.

nonce A pseudo-random number that can only be used once. It is used by blockchains primarily as a
counter.

oracles Data feeds that bring information from external sources and provide it to smart contracts on
chain. Decentralized oracles play a significant role in any blockchain system since blockchains
cannot access off-chain information on their own.

pseudo RNG Defined by the use of deterministic algorithms to generate random numbers.

siloed Refers to something that is isolated from other.

state proof A cryptographic proof delineating all the state changes that happened in a specific set of
blocks.

stateful In the context of decentralized systems, a stateful entity is one that can maintain past data.
Smart contracts are considered stateful because they can store data in the form of variables.

stateless In the context of decentralized systems, a stateless entity is one that does not maintain past
data.

tendermint An open-source blockchain protocol that allows developers to build secure decentralized
applications.

true RNG Defined by the use of external physical attributes such as radioactive decay, airwave static,
and atmospheric noise, among others, to generate random numbers.

Web 3.0 Third generation of internet services built on top of decentralized data networks with the aim
to make the internet more open and trustless.

Acronyms

ASM Additional Security Module.
BFT Byzantine Fault Tolerant.
DeFi Decentralized Finance.

ECDSA Elliptic Curve Digital Signature Algorithm.
EVM Ethereum Virtual Machine.

HTLCs Hash Time-Locked Contracts.
IBC Inter-Blockchain Communication Protocol.
MPC Multi Party Computation.

PoA Proof of Authority.
PoS Proof of Stake.

RNG Random Number Generator.

SBT Soulbound Token.

1 Introduction

1.1 Background

It has been well established that the cornerstone of innovation is rooted in iteration as much as it is in
invention. In 2008, Bitcoin's whitepaper [1], which was later abstracted to build the first blockchain
network, was an instance of an inimitable invention. It challenged existing archaic institutions from their
very foundations and provided a viable alternative to the traditional norms of transaction, computation,
and communication. The evolution and subsequent maturity of the whole Web 3.0 ecosystem has been
a process of iterative innovations. It has involved isolating the caveats of existing technical architecture
and building viable products to address them. Bitcoin's technical restraints to build and run dApps
gave birth to the Ethereum network. In turn, Ethereum’s scalability constraints gave way to multiple
[layer 1] and [layer 2| blockchains, each trying to carve out a niche for themselves by capitalizing on a core
competency to onboard new applications and attract developers, users, and liquidity providers. A few
of these blockchains have been able to achieve this goal by committing strategic trade-offs to balance
the |blockchain trilemmal While their developments have played a vital role in onboarding new users
onto Web 3.0, it has also amplified a foundational quandary of a blockchain network. The absence of
interoperability.

Up until now, every blockchain ecosystem has operated and matured in silos. A trait that gave them
gravitas and catalyzed their initial usage is now becoming the primary factor for limiting their developer
ecosystem and, subsequently, their user base. The time and effort required to explore various blockchain
ecosystems impede most users from tapping into the benefits of different blockchains. Blockchain
interoperability will, therefore, play a pivotal role in the holistic evolution of the Web 3.0 ecosystem
and will subsequently facilitate the next wave of Web 3.0 adoption. It is no longer a cosmetic add-on
feature that serves as a means to impress the end users. It has become a must-have - without a
robust mechanism that extends the [composability|of DeFi and promotes communication among various
blockchains, the success of current and upcoming L1s/L2s is a non-starter.

The self-evident and almost natural solution to the problem of blockchain interoperability is cross-
chain bridges. Over the past few months, there has been a sudden influx of cross-chain bridges with
varying capabilities - some only allow for the transfer of tokens, whereas some also provide support for
message passing between independent platforms. And even though these bridges have made significant
strides towards achieving an interoperable ecosystem, they suffer from varying issues that hamper their
usability. From doubts about their security and decentralization to their inability to simplify cross-chain
integrations, existing cross-chain platforms have often come short of the expectations placed upon
them.

1.2 A Brief History of Router V1

The Router team was among the first in a long line of cross-chain projects to comprehend the problem
of blockchain interoperability and propose a solution for the same. In January of 2022, we launched V1
of Router Protocol - an extensible multi-directional bridge connecting existing and emerging layer 1 and
layer 2 blockchains to allow contract-level data flow across them. This could be a token that is locked
on the source chain and redeemed on the target chain or an operation that is initiated on the source
chain and executed on the target chain. Two key applications built on top of Router V1 are Voyager,
a permissionless cross-chain asset swap protocol, and CrossTalk, a modular cross-chain framework that
leverages Router’s infrastructure to enable seamless state transitions across multiple chains akin to [I[BC
for Cosmos.

Even in its current form, Router Protocol, through its modular architecture, is superior to most
arbitrary messaging bridges. Most notably in the aspects of security, speed, and convenience. However,
in a true testimony to the spirit of innovation and continuous improvement, a core value of Team
Router, we're upgrading the architecture to come up with an even more elegant solution to the problem
of interoperability. Before we delve in deeper, it's worthwhile to first explore Router V1's validation
setup and its challenges.

1.2.1 Router V1 Validation Mechanism

Router V1, a[Proof of Authority| (PoA)) bridge, maintains a set of nodes/validators that listen for events
on the source chain, generate proposals for those events, and submit signed proposals on the destination
chain as a vote. For a transfer to be accepted and sent across the bridge, it must receive enough votes
to exceed a predetermined threshold. All the bridge contracts maintain a safe list of addresses so that
votes received only from approved router nodes are taken into consideration.

Forwards the message to
the writer interface.

Writer
Interface

Router
Interface

Listener

Interface

Connector Connector

Whenever a transaction
is detected on any chain,
the listener creates a
message and passes
it to the router interface.

The writer parses the
message into a valid
transaction and submits
it to the destination chain.

Figure 1: Architecture of a Router Node in Router V1

Each router node runs a Golang chain module that has four components:

e Connector: Responsible for connecting a router node to all chains. A connector is shared by a
node’'s listener and writer.

e Listener: Actively observes chain state transitions to listen for initiated transfers. Whenever a
transfer is detected, it constructs a message and passes it to the router interface. The message
has a total of 6 parameters: source chain ID, destination chain ID, resource ID, transfer type
(asset transfer or generic transfer), deposit jnonce, and payload (data for the specific transfer).

e Router: Receives constructed messages from listeners and forwards them to the writer.

e Writer: Responsible for parsing the bridge message into a valid transaction and submitting it to
the destination chain.

1.2.2 Router V1 Challenges
1. nature of the validators:

(a) No way to maintain states during the communication between two chains, which shuts the
door on a number of potential applications. E.g., Cross-chain governance, cross-chain
etc.

(b) Code redundancy - Same business logic has to be implemented on bridge contracts deployed
on all the chains.

(c) No support for application-specific bridging logic.
2. Limited validator set: Due to the cost involved in submitting votes on the destination chain, the

current validation scheme can get prohibitively expensive as we increase the number of validators.

1.3 Intro to Router Chain

To address the shortcomings of Router V1 and strike the perfect balance between security, decen-
tralization, and scalability/throughput - we introduce a new version of Router Protocol powered by

a [tendermint-based Router chain. A blockchain focused primarily on enabling state transitions across
chains, the Router chain will sit as a hub between various EEY and non-EVM ecosystems. Features
that set Router chain apart from other interoperability solutions include, but are not limited to:

1. Support for middleware contracts: Maintain states and implement custom business logic directly
in the bridging layer.

2. Plug-and-play for developers: Router has a transcendent open-source developer tooling suite to
assist with the continuous integration and development of cross-chain dApps.

3. CrossTalk: Developers looking to build cross-chain applications without any custom bridging logic
can leverage Router's easy-to-integrate smart contract library, CrossTalk.

4. Support for various kinds of use cases: Batching, sequencing, and can be enforced
directly from the Router chain.

5. Flexibility: Router provides developers with the utmost flexibility over their bridging model (stateless
or stateful), security model, and smart contract platform (EVM or CosmWasm):

6. Data aggregation: Contracts on the Router chain can serve as data aggregation modules for
various cross-chain and multi-chain applications.

7. Cross-chain meta transactions: By leveraging Router as their cross-chain infra provider, appli-
cations can enable gasless cross-chain transactions by delegating the execution of a request to a
third-party service.

8. Composability: The Router chain will have inbuilt support for global applications such as
and liquidity pools/bridges, to name a few, which will help in easier integration of other applications.

1.4 Organization

In the sections that follow, we will first comprehend the shortcomings of the existing bridging technolo-
gies, followed by a deep dive into the Router chain’s architecture, working, transfer flows, and security
considerations. Following that, we'll explore Router’s CrossTalk framework that abstracts Router chain’s
architecture into an easy-to-use smart contract library. Next, we will expand upon Router’s fee model
for various flows, followed by a look into the features afforded by Router. In drawing the paper to a
close, we will briefly touch upon other facets that can be added to the Router chain in the future.

2 Existing Solutions

The problem of blockchain interoperability has become impossible to ignore as more [siloed] ecosystems
emerge across the DeFi space. As mentioned above, to solve this issue, multiple bridging technologies
have come to the fore in recent times. Based on the level of trust required, these solutions can be
classified into three broad categories:

e Trustless: These systems do not require their users to place any trust in third-party actors.

e Centralized Trust-based: The system’s control rests with a few external actors, and users must
assume that they are not malicious.

e Decentralized Trust-based: The system is governed by an extensive network of third-party
actors; users have to trust that the majority of them are not malicious.

Examples of trustless bridging technologies include Optimistic bridges, and light-client-based bridges,
whereas [PoA| bridges come under the category of centralized trust-based bridges. Chain-based ap-
proaches fall into the third category, i.e., they follow a decentralized trust-based model. In this section,
we will examine some of the widely deployed cross-chain technologies and their advantages/shortcomings.

2.1 Hash Time Locked Contracts (HTLCs)

One of the earliest models developed to enable cross-chain operations was Hash Time-Locked Contracts
(HTLCs), which employs hash locks [2] and timelocks [3] to ensure that the operations remain atomic.
Even though HTLC implementations differ across projects, the overall concept remains the same [4].
Let us understand the working of HTLCs using the following example:

Step 1: Alice hashes a secret code to obtain hash lock k. Alice also generates a timelock ¢; corre-
sponding to an upper bound in which the hash lock can be unlocked.

Step 2: Alice uses these locks to create a smart contract ¢, on chain A and locks her funds in that
contract.

Step 3: Bob acknowledges that Alice has locked her funds.

Step 4: Bob uses the same hash lock hq and a different timelock ¢5 to create a contract ¢, on chain
B. To ensure that Bob gets adequate time to claim funds from contract ¢,, to will be less
than t1.

Step 5: Alice unlocks Bob's funds from contract ¢, thereby revealing the secret code.
Step 6: Bob uses the revealed secret to unlock Alice's funds from contract ¢, on chain A.

Step 7: If the swap does not go through, Alice and Bob can claim their funds back once the timelock
on the individual contracts expires.

One upside of using HTLC techniques is that they do not introduce any trust assumptions. However,
they suffer from a range of issues that limits their efficacy:

e They require all the concerned parties to always be online. Both the sender and the receiver need
to monitor the involved blockchains during execution actively.

e They are very slow and inefficient since every cross-chain swap requires a total of four transactions
(two on each blockchain) [5].

e Given the high fees and waiting periods involved with HTLC-based swaps, the scalability of this
approach is also a concern.

2.2 Proof of Authority (PoA) Bridges

Proof of Authority (PoA) bridges rely on a small set of outside actors that listen to events on the source
chain, validate them, and relay them to the destination chain. Incentivization and slashing mechanisms
are often kept in place to ensure the integrity of these actors. For the most part, PoA solutions work
well -

e Since few validators are involved, the consensus can be achieved in very little time, ensuring a
low-latency transfer of funds/messages.

e Adding support for new chains is straightforward - the validators can simply update their config-
uration to subscribe to events coming from the newly supported chain.

The only, albeit quite a significant, drawback of PoA bridges is that they are trust-based, not trustless.
PoA bridges necessitate that their users place trust in a federation of third-party validators. Since the
number of entities at play in a[PoA|system is relatively low compared to a[Proof of Stake| (PoS) system,
there is a possibility of collusion; a dishonest majority of the authorities can manipulate the system to
their advantage and to the detriment of the end user.

2.3 Light Client Node Approach

A light client can be defined as a smart contract that parses source chain|block headers|on the destination
chain. Since a light client node maintains a record of historical block headers, it can verify that
a particular event has indeed taken place on the source blockchain. In a light-client-based bridge,
external actors named relayers forward events from the source chain to the destination chain, including
block headers, and other relevant data. Following this, the source chain’s light client node
on the destination chain cross-references its records to verify that a particular event was recorded on
the source chain before executing a corresponding action on the destination chain. When compared to
PoA bridges (Section , light-client-based bridges have two main advantages:

e There is no need to maintain a new validation layer [6].

e There are no trust assumptions - even though a third-party actor forwards an event from the source
chain to the destination chain, light clients can independently validate the event’s existence using
the block headers it holds.

However, light-client-based approaches also suffer from a few issues:

1. Light client nodes can be incredibly expensive to operate: Due to the costs associated with
executing gas-intensive validation logic, updating block headers is a costly affair, especially for light
clients running on Ethereum [7]. To combat this, some bridges batch these block headers before
relaying them to Ethereum, which can be problematic for time-sensitive applications. For example,
Rainbow bridge, one of the most popular implementations of a light client node, batches Near block
headers and sends them to Ethereum after a period of 12-16 hours. This can lead to long waiting
times when bridging assets from Near to Ethereum.

2. Adding a new chain to the mix is resource-intensive: For every new chain, (a) a new light client
has to be deployed on all the existing chains, and (b) light clients of all the existing chains need to
be deployed on the new chain [g].

2.4 Ultra Light Client Node with Oracle-based Bridge Adaptors

To alleviate the concerns surrounding the costs involved in running a light client node, a few projects
opt to replace a light client node with an ultra-light client node. An ultra-light client interface is
similar to a light client node in that it also validates whether a transaction has been committed on
the source chain. However, unlike a light client node, an ultra-light client node does not keep track
of block headers; it cannot compute the transaction proof on its own - an external actor is required
to forward the transaction proof. To prevent any single party from tampering with the block headers
and transaction proofs to include a malicious transaction, the entity relaying the block headers and the
entity relaying the transaction proof must be different. A prominent implementation of this approach
uses an oracle to relay the block headers and a relayer to forward the transaction proofs.

Although such a model addresses the cost constraints of a light-client-based model, it introduces
a new trust assumption - the oracle and the relayer will not collude. Although this problem is unlikely
to arise while using reliable decentralized finding such oracles is not an easy task. In addition
to this, as with light-client-based bridges, including a new chain into the mix can be quite challenging
with this approach.

2.5 Relays/Sidechains

Another prominent strategy to achieve interoperability is based on relays/sidechains. Relays are abstrac-
tions (often a smart contract or a script) deployed on some chain A with light-client-like verification
capabilities over chain B [9]. Sidechains, on the other hand, can be defined as independent blockchain
networks that are connected to another blockchain, typically called a mainchain or a parent chain, via
a two-way bridge. Their functioning is similar to that of relays in the sense that every sidechain can
read and verify the information on the main chain. The block data is passed onto the sidechain for
each new block appended to the main chain. The sidechain itself implements the standard verifica-
tion mechanism of the mainchain's consensus algorithm and can therefore verify the block’s validity.

10

Cosmos and Polkadot are two of the most active projects using this technology to achieve cross-chain
interoperability.

One issue with sidechain-based projects is that the inconsistency of consensus rates between different
blockchains can impact the validity of cross-chain transactions. Another major drawback with sidechain
implementations is that they typically have the ability to read and interpret data only from their parent
chain or other sidechains connected to the parent chain, i.e., there is no support for communication
with other blockchains.

2.6 Optimistic Bridges

Optimistic verification of cross-chain requests is another technique that has gained much traction in
recent months. It is one of the more secure approaches to interoperability. Here is how optimistic
bridges generally work:

Step 1: A user or an application posts data to a contract on the source chain.

Step 2: A third-party entity validates this data by signing a[Merkle root| containing the aforementioned
data and committing it to the source chain. Some implementations of optimistic bridges require
these entities to bond funds while signing the Merkle root. In the case of a fraudulent Merkle
root, these funds are slashed.

Step 3: The root committed in the previous step is read by relayers and submitted to the destination
chain.

Step 4: Following data submission to the destination chain, a challenge period starts wherein anyone
watching the system can provide a fraud-proof and stop the transaction from going through.

Step 5: If no one flags the transaction as a fraud during the challenge period, the data is considered
valid, and the transaction can be executed on the destination chain.

Optimistic bridges are considered trustless because they require only one honest node to watch the
network to ensure no malicious activity occurs. However, the foundation of its core competency also
gives rise to its most significant drawback - high latency. Any cross-chain request sent via an optimistic
bridge cannot be executed with instant finality, i.e., applications/users will have to wait for the challenge
period to end before their request is marked as completed. Such a solution is suboptimal for any
user/application needing a low-latency solution, whether for asset transfer or a generic message transfer.

2.7 Existing Chain-based Approaches

To address the diverse variety of issues plaguing existing interoperability solutions, a few chain-based
technologies have come forward in the past few months. Such solutions deploy a dedicated
blockchain that acts as a hub connecting various blockchains. During a cross-chain transaction, trans-
actions mined on the source chain are validated on this hub chain by a dedicated network of validators.
Following this, the transactions are relayed to the specified destination chain for the corresponding
action.

Even though certain trust assumptions are involved in a chain-based interoperability solution, specif-
ically on the chain's PoS validators, they have proved to be one of the most elegant interoperability
solutions to date by finding a good balance between decentralization, security, and throughput. That
being said, chain-based solutions have not been able to realize their full potential - the lack of support
for a middleware limits the features and use-case they can enable.

e Application-level security and infrastructure-level security are tightly coupled: Since dApps
cannot deploy any middleware logic, they cannot enforce their own security mechanisms. All
dApps have to rely on the underlying security mechanism of the blockchain.

e No support for application-specific bridging logic: Applications cannot persist any states in
the middleware, limiting them from referring to historical information and implementing the “If
this, then that" kind of logic in their applications.

e Code redundancy: The same business logic has to be implemented on contracts deployed across
the chains.

11

3 Router Chain

3.1 What is Router Chain?

The Router chain is a [layer 1| blockchain that leverages tendermint’s [Byzantine Fault Tolerant (BFT)
consensus engine. As a|Proof of Stake| (PoS) blockchain, the Router chain is primarily run by a network
of validators with economic incentives to act honestly. The Router chain is built using the Cosmos SDK
and encapsulates all the features of Cosmos, including fast block times, robust security mechanisms, and,
most importantly, CosmWasm - a security-first smart contract platform. In addition to CosmWasm, the
Router chain also ships with Ethermint [10] - a Cosmos library with support for EVM smart contracts.
By leveraging the CosmWasm and Ethermint toolkit, developers can start building secure blockchain
applications on the Router chain from scratch or port their existing applications to the Router chain
with minimal overhead.

In addition to its functionalities as a blockchain network, the Router chain provides an innovative
solution to the problem of blockchain interoperability. Apart from validating state changes on the Router
chain, validators running on the Router chain also monitor state changes on other chains. Applications
on the Router chain can write custom logic to trigger events in response to these external state changes.
Additionally, applications on the Router chain can leverage a trustless network of relayers to update
states on external chains directly from the Router chain. Simply put, the Router architecture allows
contracts on one chain to interact with contracts on other chains in a secure and decentralized manner.
More details regarding the Router chain and how it enables cross-chain communication are given in the
following sections.

3.2 Characteristics
3.2.1 Decentralized Trust-based

With Router V2, we chose a decentralized trust-based approach over a trustless approach due to the
inability of the latter to support application-specific bridging logic, which would have restricted the
types of applications that could be built using Router. In the new approach, any cross-chain request
initiated from a third-party chain has to go through the Router chain’s ftendermint-based [PoS] consensus
mechanism. With multiple independent validators securing the network and a minimum validation
requirement of two-thirds plus one vote (on the basis of voting power), the Router chain minimizes
the amount of trust required by the user on the system. Furthermore, any validator having excessive
downtime or engaging in any kind of malicious activity will be penalized by having a portion of their
staked ROUTE slashed. This mechanism will ensure that validators have no economic incentive to carry
out a malicious transaction or disregard a valid transaction.

Having said that, we recognize the need for some applications to have a trustless security layer. To
that end, Router V2 ships with support for|Additional Security Modules| ((ASMs]), using which developers
can add custom security measures like optimistic verification, m-out-of-n [multisig) among others. More
about this is given in Section

3.2.2 Support for Middleware Contracts

One of the main characteristics of Router V2 is its ability to support middleware contracts. For the
uninitiated, in the current interoperability setups, applications cannot enforce an “If this, then that”
logic, as all transactions initiated on the source chain are routed to the destination chain as is. To add
any application-specific bridging logic, applications must refactor their code and deploy it on multiple
chains, which is both inconvenient and inefficient.

With Router, applications can leverage the middleware contract capability to implement custom
business logic directly in the bridging layer:

e Features such as batching, sequenced transactions, and [atomicity] can be enforced directly from
the Router chain.

e With |stateful| middleware in place, case-based routing is possible.

12

e Limited code redundancy - no need to duplicate computation logic; only the final execution
function needs to be deployed on all external chains.

3.2.3 Router Chain as a Data Aggregation Layer

The Router chain can serve as the accounting and data aggregation layer for various cross-chain and
multi-chain applications. For example, cross-chain governance can be carried out directly via a gov-
ernance contract on the Router chain, which can allow users to create and vote on proposals. The
contracts on the Router chain will serve as a cross-chain synchronizer to communicate data and voting
results between other chains (Ethereum, Polygon, BSC, etc.) and the Router chain.

3.2.4 Multilayer Security

Applications building on the Router chain do not need to rely solely on the Router chain’s security
measures to secure their applications - applications can deploy and leverage a custom security layer on
top of the infrastructure level security provided by the Router chain. For instance, before a cross-chain
request is picked up by the relayer, an application can enforce an MPC-based or [multisig] verification
of the incoming request on the middleware contract. In fact, applications can also implement custom
security checks once the request reaches the destination chain. More about application-level security is
given in Section [3.5.3

3.2.5 Flexibility

As the cross-chain domain evolves further, new applications will come to the fore, each with a different
set of requirements. In our endeavor to build a future-proof interoperability infrastructure, we provide
developers the utmost flexibility over their bridging model (stateless or stateful), security model, and
smart contract platform (EVM or CosmWasm).

3.2.5.1 Support for Multiple Languages

The Router chain has native support for both the CosmWasm and EVM compiler to accommodate
developers with varying degrees of experience and programming language preferences. As per their
comfort, developers can build and deploy middleware contracts on Router in Rust, Solidity, or Vyper.

3.2.5.2 Modular Security

Applications can implement their own security measures on top of the baseline security model provided
by the Router Chain. This security layer can be configured based on different parameters, such as the
source chain, transfer value, and latency sensitivity. For example, an application can place a condition
that transactions with a transfer value greater than $50,000 must be verified using an optimistic model.
Applications can use this modular security mechanism to include additional safeguards and provide a
more secure environment to their end users.

3.2.5.3 Infra-level Flexibility

With Router, developers are not confined to a single type of bridging infrastructure. Depending on their
requirements, they can build cross-chain applications using Router's stateful infra (using middleware
contracts) or stateless infra (CrossTalk framework).

3.2.6 Composability

Any infrastructure that encourages developers to build applications on top of it should be highly com-
posable. Keeping that principle in mind, we have ensured that various out-of-the-box applications on
the Router chain provide components and functionalities that developers can freely integrate into their
applications.

13

3.2.6.1 Global Liquidity

Several use cases of a bridging solution, including but not limited to cross-chain staking, cross-chain
prediction markets, and cross-chain lending/borrowing, depend directly on its ability to transfer funds
across chains securely and efficiently. To that end, the Router chain ships with an inbuilt asset-swapping
engine that acts as the gateway to the liquidity managed by Router Protocol. Any application requiring
access to Router's fund transfer capabilities can tap into these liquidity pools to move funds.

Consider a project that wants to move funds from one chain to another along with an instruction to
mint an NFT using the transferred funds. To do this, the application can create a sequenced request
with two contract calls - the first call will unlock funds on the destination chain using Router's asset
transfer bridge, and the second call will take the unlocked funds and execute the function to mint
the user-specified NFT on the destination chain. Additional details about Router’s asset-swapping
capabilities will be unveiled in a separate paper, due to be published soon.

3.2.6.2 Oracles

One of the most critical requirements while building a dApp is that of a decentralized oracle - not
just for price feeds of different assets, but for gas price estimation and other data feeds (based on
application-specific use-case). To spare the developers from the painstaking process of sourcing and
integrating reliable foracles| the Router chain will have a smart contract module that maintains multiple
price feeds. This contract will fetch the price feed from reliable oracle providers, such as the Band
Protocol, at regular time intervals.

3.2.6.3 |Inter-Blockchain Communication Protocol (IBC)

IBC is a communication standard that allows applications built on any Cosmos-based chain to interact
with each other. Since the Router chain is built using the Cosmos SDK, any application built on it can
use IBC to interact directly with applications on other Cosmos blockchains like Injective, Osmosis, and
others. This interaction can be a token transfer or an instruction transfer.

3.3 Workflow

Now that we understand the primary characteristics of the Router chain as an interoperability solution,
let's examine the overall lifecycle of passing a cross-chain request via the Router chain and receiving an
acknowledgment back on the source chain.

3.3.1 Generating and Sending a Cross-chain Request
Step 1: a) A user initiates a cross-chain action on an application’s smart contract on the source chain.

b) The application contract calls the iSend() function on the Router Gateway contract.

Step 2: The Gateway contract on the source chain emits an event that is listened to by the orchestrators
on the Router chain.

Step 3: Once the event is validated, the Router chain will deduct the fee from the feePayerAddress
for that dApp on the Router chain. A dApp's fee payer is its designated entity on the
Router chain that is responsible for paying the fees for all of its cross-chain requests. The
feePayerAddress can be set by the dApp using the setDappMetadata() function on the
Router Gateway contract. More details about the fee payer are given in Section [5.1

Step 4: Once the fee is deducted successfully, the request is sent to the application’s bridge contract
on the Router chain.

Step 5: After the request reaches the bridge contract on the Router chain, the bridge contract will
validate if the source contract address from which the request has been generated is correct
or not, following which it will apply its custom logic.

e If the Router chain is the destination chain, the bridge contract will execute the relevant
functions and terminate the request on the Router chain itself.

14

Source Chain Target Chain

- 5
(/) Q Orchestrators (/)
< 7) iReceive

8) Executes the

relevant logic
1) iSend

12) iAck

2) Router chain orchestrators E 9) Router chain orchestrators -
Gateway listen to the send event emitied 4====\, listen to the ack event emitted Gateway Application

Application
Contract Contract by the Gateway contract and by the Gateway contract and Contract Contract
validate it on the Router chain validate it on the Router chain N
ne ack vanaacion) Fee deducted — Qrouter f’ﬁ‘:‘”'ks
andsends 0 ([Rejgyer Vaiidation Relayer) exccuion on the
10) Excess 5) Applies destination chain
fee refunded logic and generates
an outgoing request
4) Event forwarded
Fee Payer to ‘“Ecg”n‘:‘rg‘ceiwafe App!icatiun-specific
Address Bridge Contract Source to Destination Workflow
Ack Workflow
Figure 2: Workflow with Middleware Contracts
e If an external chain is the destination chain, the bridge contract applies the custom
bridging logic, generates an outgoing request from the Router chain to the destination
chain, and pays the fees associated with the outgoing request.
e In either case, any excess fee deducted from the feePayerAddress for the execution of
the incoming request is refunded.
Step 6: After the transaction initiated by the bridge contract is mined on the Router chain, the outgoing
request is validated by the orchestrators.
Step 7: Once the event is validated, a relayer picks up the request and forwards the event to the Router
Gateway contract on the destination chain.
Step 8: a) The Gateway contract on the destination chain calls the iReceive() function on the

application contract on the destination chain.

b) The application contract on the destination chain will take appropriate actions based on
the data transferred.

Note: In case there is no need for application-specific bridging logic, applications do not need to include
a bridge contract on the Router chain. They can use Router's CrossTalk framework (refer to Section
to plug cross-chain functionalities into their existing codebase with minimal overhead.

3.3.2 Generating and Sending an Acknowledgment

Step 1:

Step 2:

Step 3:

Step 4:

After the iReceive() function execution is complete on the destination chain, the desti-
nation chain's Gateway contract emits an acknowledgment event that is listened to by the
orchestrators on the Router chain.

Once the orchestrators validate the ack request, the acknowledgment request is processed on
the Router chain:

a) (RelayerIncentive + FeeConsumed) is transferred to the relayer address,

b) (OutgoingTxFee - FeeConsumed) is refunded to the bridge contract on the Router
chain.

Once the acknowledgment is processed on the Router chain, it is sent to the application’s
bridge contract.

If the dApp had opted to receive the ack back on the source chain, the relayers send it to the
source chain's Gateway contract. If not, it is discarded.

15

Orchestrators

I:I 4) Outbound module forwards
the ack to the middleware
= contract
> Outbound |
1) Router chain = Module
orchestrators 3b) Excess fee |
Gateway listen to the P N i A . isrefunded |
Contract acknowledgment 0o 2) Attestation :
event (A module !
i1 validates > <>
X 3a) Relayer i | theevent
Ta rget Chain receives the N/
fee consumed] Application-specific
along with its At'\t/‘f;éi'l';’” Bridge Contract
incentive
Relayer | «--------------:
2 router

Figure 3: Acknowledgment Workflow

Step 5: The Gateway contract on the source chain sends the ack to the application’s source chain
contract.

3.4 Architectural Components

3.4.1 Application Contracts

These are contracts deployed by applications on third-party chains and serve as the intermediary between
end users of the application and the Router cross-chain infra. In the lifecycle of a cross-chain transaction,
these contracts are responsible for making the iSend () function call to the Gateway contracts on the
source chain by passing the address of the bridge contract on the Router chain as well as the relevant
payload. On the destination chain, application contracts will execute the instructions forwarded by the
Gateway contract.

3.4.2 Gateway Contracts

As their name implies, Gateway contracts serve as the interface for application contracts to interact
with Router’s bridging infrastructure. Gateway contract functions include:

e iSend() - The application contract on the source chain can call its corresponding bridge contract
on the Router chain by invoking iSend() on the Gateway contract with the relevant parameters.

Upon receiving this function call, the Gateway contract emits an event that is listened to by the
Router chain orchestrators.

e iReceive() - The bridge contract on the Router chain can call its application contract on the
destination chain by submitting an outbound request with the relevant parameters. Relayers will
eventually submit the outbound request to the destination chain by invoking the iReceive ()
function on the Gateway contract, which will subsequently pass the payload to the destination
contract.

e setDappMetadata() - To facilitate cross-chain transactions, a feePayerAddress needs to be

set for paying the fees on the Router chain. This can be achieved using the setDappMetadata()
function available in the Gateway contracts.

Note: Once the feePayerAddress is set, the designated fee payer must approve the request
to act as the fee payer on the Router chain. Without this approval, dApps will not be able to
execute any cross-chain transactions.

3.4.3 Orchestrators

Router orchestrators are entities that listen to incoming cross-chain requests from other chains, attest
their validity, parse them into a unified format and post them on the Router chain. These attested

16

requests can then be picked up by the relayers and forwarded to the destination chain. All validators
must run an orchestrator instance to be a part of the Router chain ecosystem.

Orchestrator Instance

Listener Messaging Queue Dispatcher

A L. EVM Listener
(Ethereum)

<

EVM Listener
(Polygon)

¢

Y

N Sign and 3 Router
Router Queue) > Broadcast Chain

A

A
@
:.: » | Polkadot Listener
E=mp— F---» | Solana Listener
-
Figure 4: Orchestrator Architecture
Working

At a high level, a Router orchestrator works like a funnel that gathers events from various chains and
posts them to the Router chain. To do so, an orchestrator uses a listener and dispatcher model wherein
the listener module aggregates events while the dispatcher module forwards these events to the Router
chain [11].

e Listener: The listener module of an orchestrator listens to events emitted from specific chains
based on the chainType parameter in the configuration provided to it. Listeners operate as
threads (goroutines) under an orchestrator. All listeners subscribe to multiple types of events -
a regular iSend() (cross-chain send) event, an iRecieve() (cross-chain receive) event, and

an iAck() (acknowledgment) event. Once the listener module receives an event, it waits for
the preconfigured amount of network confirmations (for example, three network confirmations for
requests originating from Mumbai/Fuji) before parsing it into a message. Once the message is
prepared, the listener adds it to a queue.

¢ Queue: The queue is used to store and deliver transformed messages to consumers (dispatchers)
in a first-in-first-out manner while ensuring that duplicate messages are automatically discarded.

e Dispatcher: The dispatcher module is essentially responsible for streamlining the incoming re-
quests by (a) listening to the queue, (b) signing the messages, and (c) broadcasting them to the
Router chain.

Besides verifying the incoming requests to the Router chain, orchestrators also verify the outgoing
requests from the Router chain.

3.4.4 \Validator Set (Valset)

Each validator set consists of a nonce, a list of validators, and the height on the Router chain at which
the valset is created. The validator set on the Router chain should be consistent across all the Gateway
contracts.

17

Updating the Valset

Here is how the valset is updated on all the third-party chains:

Step 1: At the end of each block, the Router chain checks if the valset power has changed by more

than 5%. If it has, the Router chain creates a new valset request.

Step 2: Orchestrators will query the chain for the latest valset request and confirm the new valset

request by sending a MsgValsetConfirm tx.

Step 3: Once the % + 1 majority has approved the new valset request, the relayer will pick the valset

request and send the updateValset() contract call on all the Gateway contracts of all the
configured chains in the Multichain module.

Step 4: The Gateway contracts will verify the signatures, replace the old valset with the new valset

and emit a ValsetUpdate event.

Step 5: The orchestrators will listen to the ValsetUpdate event and submit a tx to the Router chain,

confirming that the valset has been updated on all the chains.

Step 6: On receiving the confirmation from the %—1—1 majority, the Router chain will update the valset

nonce in the Multichain module.

3.4.5 Multichain Module

The Multichain module persists the configuration of all the external chains supported by the Router
chain and provides APIs to query the ChainConfig, which consists of the following:

chainlD: Network ID of the supported blockchain, for example, 1 for Ethereum mainnet, 137 for
Polygon, etc.

chainName: Name of the chain (Polygon, Ethereum, etc.)

symbol: Native gas token symbol for the supported chain (ETH for Ethereum, MATIC for
Polygon, etc.)

nativeDecimals: Number of decimal places in supported by the chain’s native token
chainType: EVM, Cosmos, Solana, Polkadot, etc.

confirmationsRequired: To make sure that the tx is finalized, the orchestrator has to wait for
a specified number of network confirmations on each blockchain, which is determined by this
parameter

gatewayContractAddress: Router Gateway contract address
gatewayContractHeight: Router Gateway contract deployment height
routerContractAddress: ROUTE ERC20 contract address on the chain

lastObservedEventNonce: Nonce of the latest event that was observed on the chain (initially,
it will be set to zero)

lastObservedValsetNonce: Nonce of the latest ValsetUpdate event (initially, it will be set to
zero)

Adding a New Chain

To add a new chain in Router’s interoperability mesh, the following steps need to be followed:

Step 1: Deploy a Router Gateway contract on the new chain with the current validator set.

Step 2: Create a chain integration governance proposal and send it to the Multichain module.

Step 3: If not already present, deploy a ROUTE token contract on the new chain.

Step 4: Once the governance proposal is passed, the requested chain config is added to the Multichain

module.

18

3.4.6 Application-specific Bridge Contracts

The application-specific bridge contracts are middleware contracts deployed on the Router chain that
include the logic required to process the incoming request from a third-party chain and generate an
outoging request to another third-party blockchain. These contracts can be written in either Rust
(compiled using CosmWasm) or Solidity (compiled using the EVM compiler provided by Ethermint).

To ensure that a faux contract doesn’'t execute any of the functions in these contracts, a bridge
contract should always maintain a mapping of the chainId and addresses of all the application contracts
(deployed on the third-party chains) that can execute its functions. Along with the payload, the Gateway
contract will always pass the msg.sender parameter, which can be cross-referenced by the bridge
contract to determine whether the source chain application contract is genuine or not.

3.4.7 Token and Gas Price Oracles

For a bridge contract to create and submit a cross-chain request from the Router chain to any external
destination chain, it should be aware of the current gas price on the destination chain. Additionally, a
bridge contract may require the price of any external chain’s native gas token for internal calculations.
To address this, we need oracles on the Router chain, which provides the token and gas prices of various
chains.

3.4.7.1 Gas Price Oracle

The steps involved in querying gas prices and providing a generalized gas price oracle to the contracts
on the Router chain are as follows:

Step 1: A simple microservice will be used to query the gas price on different chains and submit the
same in the form of a transaction on the Router chain.

Step 2: The Router chain, upon receiving the gas prices from multiple providers, will take a median
and update the oracle module state with the gas price.

Step 3: At any given time, application-specific bridge contracts can query the oracle module for the
latest gas prices of external chains and pass the gasLimit parameter for the outbound request
accordingly.

3.4.7.2 Token Price Oracle

Token prices of all the native tokens of all the chains in the Multichain module will be fetched from
the Band Protocol via Cosmos’ The system has been designed in a way that different types of
providers can be supported in the long term. The steps involved in querying price feeds and providing
a generalized token price oracle to the applications on the Router chain are as follows:

Step 1: At regular intervals, the Router chain will generate a Band IBC oracle request to the oracle
module on the Router chain. The length of these intervals is decided using governance and
added to the chain configuration.

Step 2: Upon receiving the request, the module will query the Band Protocol for the latest price feed
of all the assets specified in the multichain module.

Step 3: Upon receiving the Band IBC price feed, the oracle module will update the latest price of the
assets in its contract state.

Step 4: At any given time, any application can query the oracle module for the latest price feed of
any chain's native asset. Upon receiving the request, the oracle module will return the most
recent price of the specified asset from its contract state.

Note: In addition to the bridge contracts, the token price oracle is also used by the Router chain to
estimate the outbound transaction fee in ROUTE tokens.

19

3.4.8 Relayers

Relayers are permissionless entities that relay executable proposals from the Router chain to a specific
destination chain. The Router chain has a set of relayers operated by various third parties, which
distributes the responsibility. In the set, each relayer listens to the Router chain and relays data to the
destination chains as and when required. These relayers also carry out subsequent actions based on the
events that have been transmitted.

Relayer

- Listens to the Router
chain for valid executable

proposals
Composes a tx as per proposal
data
Sends the tx to the specified
destination chain(s)
»
Ll
Chain A
Gateway
Contract
Relayer 2
Transaction
Pool
g
7
Chain B
2 router Relayer 3 Gateway
Contract
I g
' >
Chain C
Gateway
Relayer N Contract

Figure 5: Relayer Functioning

Functionalities
1. The relayer will be able to submit cross-chain requests from the Router chain to other chains.

2. The relayer can choose to whitelist bridge contract addresses and process outgoing requests
originating from only those addresses.

3. The relayer will be able to make a updateValset() call to all the Gateway contracts configured
in the Multichain module.

4. The relayer will securely hold the private keys to wallets on different chains. These chains can be
of distinct types, such as EVM, Cosmos, and Substrate, among others.

3.4.8.1 Working

Step 1: The listener interface of the relayer will listen to the transaction pool on the Router chain for
unprocessed requests and add them to a tx queue.

Step 2: The processor interface of the relayer will fetch all the unprocessed requests from the tx queue.

20

Step 3: The relayer will transform the request into a defined message format where it queries the
Router chain and fetches:

a) the current valset
b) payload from the request

c) signatures of validators who signed the request

Step 4: The relayer validates if the request has received % + 1 votes. If it has, it will estimate the gas
price required to submit the request to the destination chain and check if sufficient gas price
is provided by the bridge contract to execute the request.

Step 5: Finally, the request is relayed to the destination chain defined in the request.

Step 6: Once the request is successfully executed on the destination chain and an acknowledgment is
received for the same, the relayer receives the fee it incurred in posting the tx on the destination
chain and an additional fee on top of it.

3.4.8.2 Addressing Relayer Collisions

In some cases, multiple relayers may pick up the same request. To avoid collisions while submitting the
transaction on the destination chain, relayers may choose to implement collision prevention strategies
at their end. For example, relayers can include a specified time offset within their logic to ensure they
wait for a certain amount of time before delivering the transaction to the destination chain. If another
relayer submits the transaction within this time frame, they can simply discard it. Even if relayers do
not implement any collision prevention strategy, no transaction that has already been executed will ever
get replayed thanks to the event nonce-level validation done by the Router Gateway contracts on the
destination chain. The Gateway contracts always maintain a mapping of the most recent event nonce
that has been executed. Since event nonces are incremental, if any request with an event nonce equal
to or less than the mapped event nonce is received, it is ignored by the Gateway contract.

3.4.8.3 Addressing Scalability Constraints via the Use of Application-specific Relayers

Scaling issues might arise if we process the requests sequentially, i.e., in the order of event nonce. To
address this, the Router chain’s relay architecture allows for the parallel execution of requests. Since
the relayer network is permissionless, each application can run its custom relayer to process its requests.
This way, an outgoing request from one application bridge contract does not affect an outgoing request
from another.

) Application Bridge Event
_________________________ B1 Relayer Contract Nonce Status
<>
1 True
» B1
Bridge Contract 1 ”
B11] 1B12 2 False
h 4 h 4 1 True
B21 | T i
(?h 55> rafsaction > B2 Relayer > B2 2 False
»!
B23 3 True
Bridge Contract 2 A A -
B31i-oemm--iB32
1 True
» B3
2 False
|
—> | B3 Relayer Gateway Contract
Bridge Contract 3
2 router Target Chain

Figure 6: Improved Scalability using Application-specific Relayers

21

3.4.8.4 Gas Estimation

All relayers will need to run a GasEstimator module to estimate the gas price required to submit a
request to the destination chain. If a third-party estimator service like Owlracle, Eth Gas Station, or
others is available, the relayer will estimate the gas using that; if not, the relayer will estimate using an
RPC endpoint.

3.4.8.5 Trustlessness

To ensure that the data forwarded by the relayer is not tampered with, the Gateway contract on the
destination chain decodes the signed call data to verify the validator signatures. Upon ensuring the
authenticity of the request, the call data is executed.

3.4.8.6 Manual Relaying using Router’s Web Relayer

Web relayer is a user interface provided by the Router team using which a tx payload can be manually
relayed on the destination chain.

e If anyone wants faster execution for their request on the destination side, they can manually
increase the gas price and perform the tx from their wallets using the web relayer.

e Transactions stuck on the Router chain for any reason can be replayed using the web relayer.

3.5 Network Security

3.5.1 Infrastructure-level Security

Security is an essential aspect of any blockchain network. The Router chain derives its security from
its underlying [tendermint consensus engine.

Decentralized Network of Validators

For any block to be mined, % + 1 validators by voting power will be required to achieve consensus,
meaning the network can only be compromised if validators holding a combined voting power of more
than 67% decide to collude and engage in malicious activities.

PoS Economics

Any node having excessive downtime or engaging in any kind of malicious activity will be penalized
by having a portion of their staked ROUTE slashed. This mechanism will ensure that the validator
nodes have no economic incentive to carry out a malicious transaction. Moreover, all validators who
are properly aligned with the network will be eligible for a portion of the block rewards. More about
the validator economics will be disclosed in the subsequent versions of this paper.

Byzantine Fault Tolerance

The Router chain can tolerate up to % of its validator nodes being faulty. This includes both inactive
nodes and malicious nodes.

ED25519 Signature Scheme

All communication between the Router chain validators is secured by ED25519 [12], an elliptic curve-
based encryption scheme [13], considered one of the fastest and most secure authentication mechanisms.

Decentralized Governance

Any updates on the Router blockchain will be made after a governance decision undertaken by the
ROUTE token holders and stakers.

22

3.5.2 Bridge-level Security

Any cross-chain request from an external chain to the Router chain undergoes a validation process
wherein the orchestrators attest to the presence of the request’s corresponding source chain transaction.
Similarly, before an outgoing request from the Router chain is picked up by a relayer, the orchestrators
verify if the event's corresponding transaction on the Router chain has been mined. For signing the
attestations during the validation, the orchestrators use the [Elliptic Curve Digital Signature Algorithm|

(ECDSA) [14].

3.5.3 Application-level Security
3.56.3.1 On Router Chain

Application-specific
Bridge Contract
Incoming R Pass Pass Pass Outgoin
g Request 2/3+1 _ > > PoS Chain — y Oulgoing
_ Orchestrator < / > Validation Request
Validation - @ - @ ; @
Fail H Fail Fail
Bridge-level security I H Infra-level security
to authenticate the Custom Security to ensure that no
inbound request Model malicious transaction
L X is mined on the
Application-level security Router Chain
to add further authentication
checks or to implement
data validation
2 router

Figure 7: Multilayer Security on the Router Chain

The Router chain provides generic message-passing bridge security - it ensures that the data reaching
the destination chain is authentic, i.e., the data/instruction generated by the application on the source
chain reaches unaltered to the destination chain. However, to add another layer of security - whether to
check the validity of the data or to have an additional authenticity check, applications can put in smart
contract-level checks like having their own validators sign the contract on the Router chain before the
data is forwarded to the destination chain.

Additionally, applications can design and implement their custom governance strategies to handle
updates to the application. In fact, due to the ability of Router chain contracts to change the state
of contracts deployed on external chains, the governance decisions taken on the Router chain can be
broadcasted and executed on other chains.

3.5.3.2 On Destination Chain

For developers who do not wish to implement application-level checks on the Router chain itself or who
are looking to leverage Router's CrossTalk framework instead of the middleware flow, we have introduced
the concept of an [Additional Security Module (ASM)). Akin to Hyperlane's Sovereign Consensus [15],
this module layer enables applications to incorporate their own security standards, such as an m-out-
of-n or a fraud-proof-based authentication model (optimistic approach), among others. More
details about Router’s [ASM| feature is given in Section

4 CrossTalk

4.1 What is CrossTalk?

Router's CrossTalk library is an extensible cross-chain framework that enables seamless state transitions
across multiple chains. In simple terms, this library leverages Router’s infrastructure to allow contracts
on one chain to pass instructions to contracts deployed on another chain without needing to deploy any
contracts on the Router chain. The library is structured in a way that it can be integrated seamlessly

23

into your development environment to allow for cross-chain message passing without disturbing other
parts of your product.

4.2 Why is CrossTalk Required?

Based on our initial market research, we have discovered that a fair number of cross-chain applications
do not require a customized bridging logic for their functioning. Instead, they merely need an infra layer
that allows them to pass instructions between different blockchain networks. And while the Router chain
middleware flow enables the applications to route instructions/messages from one chain to another, to
do so, they need to deploy a dedicated contract with the routing logic on the Router chain. Even though
we provide a template for a standard bridging contract, we do not want the developers, especially the
ones new to the Cosmos ecosystem, to go through the task of deploying and managing a middleware
contract.

With CrossTalk, applications can transform their existing single-chain and multi-chain applications
into cross-chain applications by including nothing but a few lines of code in their existing contracts.
Therefore, for cross-chain dApps that do not require custom bridging logic or any data aggregation
layer in the middle, Router’'s CrossTalk framework is the best option.

4.3 CrossTalk Workflow

The CrossTalk workflow is very similar to the middleware flow, except that the request from the source
chain does not go to a contract on the Router chain. As soon as the request is validated on the Router
chain, it gets picked by the relayer and gets forwarded to the destination chain.

Source Chain Target Chain 6) Executes the

relevant logic
1) iSend
-
Q Orchestrators (/>
< 5) iReceive

o 10)jiAck 2) Router chain orchestrators E 7) Router chain orchestrators o
Application Gateway listen to the send event emitted L=====\ listen to the ack event emitted Gateway Application
Contract Contract by the Gateway contract and by the Gateway contract and Contract Contract
validate it on the Router chain validate it on the Router chain

A

4) Relayer picks up

9) Relayer picks up 3) Fee deducted
the ack transaction E " the \g:r;z:L:\({)(;wrde
and sends it to the ven nds i
source chain Relayer Validation Relayer execution on the
destination chain
8) Excess
f

fee refunded

Fee Payer
Address z router

Source to Destination Workflow

Ack Workflow

Figure 8: CrossTalk Workflow

4.4 Different Types of CrossTalk Requests

Now that we have an understanding of the CrossTalk workflow, let us take a look at the different
types of requests that can be sent using CrossTalk. We will be categorizing the requests based on two
different properties:

1) Number of Contract Calls

Depending on the number of contract calls present in a cross-chain request, a CrossTalk request can
be categorized into two types:

e Single-call Request: A request that includes only one contract call for execution on the desti-
nation chain.

24

e Multi-call Request: A request that includes multiple contract calls for execution on the desti-
nation chain.

Consider an application that allows users to transfer their ERC20 tokens from one chain to another.
If only one ERC20 token is being transferred, then the request will fall under the former category.
However, if multiple tokens are transferred in a single request, it will be categorized as a multi-call
request.

2) Acknowledgment Requirement

Depending on the need for an application to receive an acknowledgment for its request on the source
chain, a CrossTalk request can be split into two types:

e Requests Without Acknowledgment: An acknowledgment is not required on the source chain
after the request is executed on the destination chain.

e Request With Acknowledgment: If an acknowledgment is required on the source chain, de-
velopers need to specify whether they want an acknowledgment only in the case of a successful
call, a failed call, or in both cases.

If an acknowledgment is anticipated on the source chain, an acknowledgment handler function with
the relevant logic to handle the acknowledgment on the source chain has to be implemented by the
application in their contract. If an acknowledgment is not anticipated, the acknowledgment handler
function can be left empty, as it will never get invoked.

5 Fee Management

5.1 Fee Payer Considerations

The fee associated with any cross-chain request initiated by a dApp is paid by the dApp’s corresponding
fee payer account on the Router chain. This fee payer account is set by the dApp for all the integrated
chains and can be changed anytime. Any fee refunds are also credited to this account.

e To designate the fee payer for any chain or to modify the fee payer address, the application must
invoke the setDappMetadata() function on that chain's Gateway contract and provide a valid
address on the Router chain.

e To prevent unauthorized usage of someone else’s address as the fee payer, the designated fee
payer address must perform a fee payer approval transaction on the Router chain.

e The approval as a fee payer can be provided by accessing the lexplorer.

5.2 Gas Considerations

e The gas price for the execution of incoming cross-chain transactions on the Router chain is decided
via governance and included directly in the chain configuration.

e To ensure the proper execution of CrossTalk requests on the destination chain, users must specify
the gas price and gas limit in their request metadata. This information is used to calculate the
fees required for the transaction. If the gas price is not specified, the gas price oracle on the
Router chain will estimate it.

e While exercising the option to run their own relayer, applications might want to leave the task of
gas limit estimation to the relayers. In such a scenario, they can pass the gas limit as 0.

25

https://explorer.testnet.routerchain.dev/feePayer

5.3 Incoming Request Fee Structure

To execute an incoming request on the Router chain, users are required to configure a gasLimit
parameter in their request metadata. This gasLimit is multiplied by the gasPrice present in the
Router chain configuration to calculate the amount of ROUTE tokens to be deducted from the user-
specified feePayerAddress. This fee is used to cover the cost of transaction execution (bridge contract
call) on the Router chain. Note that if your fee payer does not have sufficient ROUTE balance, the
transaction will not be executed. Since the feePayerAddress cannot be changed once set, you will
have to top up the feePayerAddress to ensure the execution of your request.

5.4 Outgoing Request Fee Structure

The bridge contract must pass reasonable gasPrice and gasLimit parameters to cover the cost of
executing any outgoing cross-chain request on the destination chain. Once the Router chain receives
the outgoing request, it queries the oracle module for the latest price of the ROUTE token and the
native gas token of the specified destination chain. It uses the gas price fetched using the gas price
oracle, and the token prices fetched using the token price oracle to convert the gas cost involved in the
execution of the outgoing request from the destination chain native token to the ROUTE token.

5.5 CrossTalk Fee Structure

CrossTalk works on a prepaid fee model. Upon receiving a CrossTalk request, the Router chain will
calculate the estimated fee for executing the transaction on the destination chain in terms of ROUTE
tokens and deduct the fee plus incentive from the feePayerAddress upfront.

EstimatedFeeInRoute = EstimatedFeeInDestNativeToken * PriceRatio
where:

EstimatedFeeInDestNativeToken = DestGasLimit * GasPriceInDestNativeToken

PriceRatio = DestNativeTokenPrice / RouteTokenPrice

5.6 Other Fee Considerations

e Fee and relayer incentive for any cross-chain request on Router have to be paid in ROUTE tokens
only.

e To prevent Sybil attacks on the Router chain, Router’'s Gateway contract on the source chain
charges a minimal fee from the application contract to cover the cost of orchestrator validation.
This fee is paid in the source chain’s native token.

5.7 Handling Refunds

Once the Router chain receives the acknowledgment generated by the destination chain’'s Gateway
contract, it (a) pays the fee used along with the relayer incentive to the relayer from the already
deducted fee, and (b) refunds the surplus fee back to the feePayerAddress. This mechanism ensures
the following:

e The relayers receive their incentive automatically without any delay.

e The applications can send extra gas limit as a buffer since they will get automatic refunds in case
of a surplus fee.

6 Features

6.1 Cross-chain Meta Transactions

With Router V2, we are coming up with a first-of-its-kind cross-chain meta-transaction capability. As
mentioned in the previous sections, the fee for any application’s cross-chain request is deducted from

26

that application’s feePayerAddress. Applications can use this feature to delegate the execution of
cross-chain requests to a third-party service and enable feeless cross-chain transactions for their end
users.

6.2 Decentralized Cross-chain Read Requests

One of the most underrated, albeit important, aspects of blockchain interoperability is being able to
read the state of contracts present on one chain (say chain A) from a different chain (say chain B). A
good example of this could be a [Soulbound Token| (SBT]). Let us assume that every user gets a
on chain A, which contains the user's Date of Birth (DoB) information. This information can come
in handy for multiple dApps that want to restrict users below a particular age. Creating this on
multiple chains will not make sense, but having the information of the across multiple chains is
essential for dApps to be able to access this information and use it. To achieve this, applications can use
Router to generate a decentralized read request between two chains. This request will include (a) the
contract state to read on the destination chain (in this case, the user's age) and (b) the operation to be
performed when the data is received back on the source chain (in this case, it could be to accept/deny
user's request to access a gambling application). More details in regards to generating, sending, and
handling a cross-chain read request are given in our documentation|

6.3 Additional Security Modules

Security is all-important in a cross-chain infrastructure. As a PoS network built on Tendermint, the
Router chain's baseline security model is one of the most robust. However, at Router, we believe that
applications leveraging our infrastructure should be able to implement their own safeguards on top of
our baseline model if they so require. In fact, we have already alluded to the fact that a modular
security mechanism is one of the core facets of Router V2. Applications utilizing Router’s middleware
flow can already take advantage of this option by coding custom security logic on their Router chain
contracts.

As noted in Section [3.5.3.2, we also provide a customizable security layer on external chains in the
form of [Additional Security Modules (ASMs)). Integrating an can enhance a dApp’s ability to
mitigate potential security threats at an application level and maintain the overall system’s security.
We support a few modules out of the box, but developers are free to add their own implementations.
This can include security measures such as a waiting period similar to optimistic roll-ups, rate-limiting,
or other relevant features that can be seamlessly integrated into the dApp to provide an additional layer
of protection.

When to Use an |ASM?

There are no fixed criteria that applications need to satisfy to implement an Applications can
choose to configure additional security measures based on various parameters:

1. Type of call: Applications might not want an additional security layer for a read request. However,
for a cross-chain write, an application might require a few further checks.

2. Source chain: An application might want higher security for transactions originating from specific
chains.

3. Transfer value: In case of asset transfers, or sequenced asset and instruction transfers, an appli-
cation might want to place additional safeguards if the ticket size of the transfer is above a certain
threshold.

4. Latency sensitivity: For transactions that need to be executed in a low-latency environment,
applications can impose a timestamp check by adding a custom module that reverts a transaction
if the transaction is not received within the expected duration.

27

https://docs.routerprotocol.com/develop/message-transfer-via-crosstalk/evm-guides/cross-chain-read-requests

How Does an ASM Work?

e An |ASM| can be added to a chain’'s Gateway contract via the verifyCrossChainRequest ()
function. This function returns a boolean value, based on which the Gateway contract decides
whether to proceed with the transaction request or not.

e When the function returns true, the request is deemed valid, and the Gateway contract proceeds
with its execution. Conversely, if the function returns false due to transaction tampering or any
other issue, the request is rejected, and an acknowledgment is sent back to the Router chain for
the same.

o In case the request to the module reverts, the transaction call to the Gateway contract
will also be reverted, and no state changes will be recorded on the Gateway contract. As a
result, relayers can try to execute the request again since there will be no changes in the Gateway
contract's state. However, the Gateway contract will not execute the request until the
implementation returns either true or false. Once the request is executed, an acknowledgment
event will be generated to convey this information.

e These functions can be called by the Router Gateway contract only. Developers have to integrate
these functions with the same selector in their ASM]| module implementation.

6.4 Transaction Batching

Transaction batching can help a lot of applications cut costs for their cross-chain operations. Depending
on the requirement of the application, Router can be asked to execute batches of transactions either
directly on the Router chain or on the destination chains.

6.4.1 Batching at the Router Chain

Router V2 enables applications to batch and execute transactions directly on the Router chain. Consider
a scenario wherein users want to mint an NFT on Polygon from various chains. We can aggregate users’
requests from different chains on the bridge contract, i.e., collate all the requests in a single payload
and then execute that call when a certain number of requests are received. This kind of system will save
costs involved in (a) executing individual transactions on the Router chain and (b) relaying separate
transactions to the destination chain, in this case, Polygon. The entire step-by-step flow of batched
cross-chain NFT minting can be found in Appendix [B]

6.4.2 Batching at the Destination Chain

For executing a transaction batch on the destination chain(s), the bridge contract will create and send
a BatchRequests, an array of BatchRequest, to the Router chain. Note that destination chain based
batching can be of two types:

a) single-chain batching, wherein all transactions in a batch need to be executed on the same destination
chain, and

b) multi-chain batching, wherein batches within the BatchRequests array can span multiple destina-
tion chains.

Single-chain Batching

In the case of single-chain batching, the BatchRequests array contains a single BatchRequest that
contains all the cross-chain transactions to be executed on the same destination chain. In this case,
transactions are, by default, executed in the order in which they are specified. The Router chain will
create an OutgoingBatchTx for the BatchRequest, which eventually gets signed by orchestrators
and broadcasted to the Gateway contract by a relayer. The BatchRequest will consist of an array of
ContractCalls - an object consisting of DestinationContractAddress and Payload.

28

Multi-chain Batching

In multi-chain batching, the BatchRequests array consists of multiple BatchRequest arrays, each of
which has to be executed on separate destination chains. Multi-chain batching can further be divided
into two categories:

1) Ordered multi-chain batching: All batches need to be executed in sequential order.
2) Unordered multi-chain batching: Batches can be executed in any order.

For the latter, the relayer will broadcast all the batches in a BatchRequests array simultaneously to
the respective destination chains. All the transactions within each batch will be executed sequentially
as per the single-chain batching mechanism. For the former, however, applications will have to enforce
it using the bridge contract on the Router chain -

Step 1: The bridge contract submits the first batch request to the Router chain.
Step 2: Router chain sends the batch request to the designated destination chain.
Step 3: The bridge contract receives an acknowledgment for its request.

Step 4: Upon receiving the ack, the bridge contract submits the next batch request to the Router
chain. Steps 2, 3, and 4 can be repeated until all the batches are processed.

To make it easier for the bridge contract to handle acknowledgments, the Router chain will assign
a BatchNonce whenever the bridge contract submits a BatchRequests. Eventually, when the bridge
contract receives an ack, it can correlate the ack with the previously submitted request using the
BatchNonce.

6.5 Batch Atomicity

Router V2 ensures atomic batch delivery, i.e., it ensures atomicity across multiple transactions in a batch
to save users from the overhead of deploying wrapper contracts to handle multiple function requests. It
is important to note that [atomicity can only be ensured for batches submitted to a single destination.
Whenever the Gateway contract on a chain receives a batch request, it verifies the signatures and
executes all the contract calls in the batch. If any of the contract calls fail, the Gateway contract will
revert, thereby ensuring atomicity.

If, in case, you want non-atomic execution of a batch’s contract calls, you can deploy a proxy
contract on the destination chain. In this case, the Gateway contract will execute the request via the
proxy contract and errors arising in any of the contract calls will be handled on the proxy contract to
ensure that the transaction doesn't get reverted and all the remaining calls are executed.

6.6 MetaMask Compatibility

Unlike most chains built using the Cosmos SDK, the Router chain will have full-fledged support for
MetaMask, one of the most popular non-custodial crypto wallets. This means that users will be able
to:

a) Add the Router chain to the list of networks on their MetaMask wallet.
b) Import their Router chain assets and balances to their MetaMask wallet.

c) Review transaction details, including tx data, gas price, and gas limit, and sign transactions directly

from their MetaMask wallet while connected to the Router chain.

29

7 Future Work

7.1 Interoperability with Private Blockchains

Recent years have witnessed increased adoption of private blockchains across various sectors - e-
commerce, healthcare, logistics, insurance, and financial services. The proliferation of private blockchains
has been accompanied by growing concerns regarding their security. Due to the presence of fewer
nodes, private blockchains can be more easily compromised compared to public blockchains. To mit-
igate this risk, we are planning to build a decentralized communication channel between public and
private blockchains on top of the Router chain. Such a channel will allow private blockchains to com-
mit their onto a public blockchain and thereby leverage the security guarantees of large
public blockchains.

7.2 Providing Instant Finality for Transactions on Optimistic Blockchains

To solve for Ethereum’s scalability constraints, various optimistic rollups have come to the fore. They
seek to minimize transaction costs by batching various blocks of transactions before committing them
on Ethereum. Once a batch gets committed on Ethereum, it must go through a challenge period
before it can be considered valid. While this challenge period goes on, activities on the optimistic
rollup can continue. However, if anyone generates and submits a valid fraud-proof during the challenge
period, then the state of the entire optimistic rollup gets rolled back to the state that existed before
the fraudulent batch was committed on Ethereum.

Since optimistic rollups, by design, do not have a way to achieve instant finality, there is always a
theoretical possibility of transactions getting rolled back. This can be particularly problematic in cases
where the optimistic rollup is part of a cross-chain transaction. Imagine a scenario wherein a user
sends some funds from an optimistic rollup, Optimism, to another blockchain, Avalanche. Once the
transaction is mined on Optimism, the bridge deducts funds from the user's wallet on Optimism and
credits them to the user's wallet on Avalanche. Let us assume that after a few hours, someone found
and proved that one of the transactions preceding this transaction was fraudulent. Now, Optimism will
be rolled back to a state wherein the user's funds are not deducted on Optimism, but since Avalanche
has not been rolled back - the user also has funds on Avalanche.

To solve the problem of instant finality for cross-chain contract calls, we will use the Router chain
to provide the proof of validity of the rollup chain state committed to Ethereum. The validators of
the Router chain will run a verifier of the Optimistic rollup chain. The verifier will construct the state
root of the Optimistic rollup batch offline and compare it with the state root of the batch submitted to
Ethereum. If the state root matches, the validators will submit an attestation to the Router chain with
the batch state root. Once % + 1 majority of validators attest the state root, it's added to the Router
chain state. Following this, an outbound transaction consisting of the attested state root gets relayed
to the Gateway contract on Ethereum, thereby providing instant proof of validity. As the validators
have verified the state root already, it is guaranteed that a fraud-proof against the batch will not be
created. The dApps on the Ethereum chain can query the Gateway contract for the attested state root
and instantly proceed with the contract call rather than waiting for the challenge period.

7.3 Orchestrator Optimization using

Even with the various measures to address orchestrator scalability, the voting process can be resource
intensive. To reduce the time and cost overheads associated with the current orchestrator voting process
while maintaining the same security benchmarks, we will switch to an MPC-based voting mechanism in
the coming months. In the new design, a new P2P network will be established amongst the orchestrators
to validate all the requests.

As mentioned in Section every validator on the Router chain runs an orchestrator instance.
In the new model, every validator will also have a corresponding sequence number that is derived from
its Router chain address. At any given time, the orchestrator instance associated with the validator
will listen to events from all the supported chains. If the event nonce matches the sequence number
of the validator, then the orchestrator will initiate an [Multi Party Computation (MPC) request on the
P2P network along with its signature. Upon receiving the MPC request, other orchestrators on the

30

P2P channel will fetch and validate that specific event. Upon successful validation, the orchestrators
will add their own signatures against the request. Upon receiving the required threshold, the request
is transmitted to the Router chain. It is important to note that this model is currently in the ideation
phase, and most of its mechanics, including its underlying digital signature algorithm, are yet to be
finalized.

7.4 Automated Triggers/Scheduler-as-a-Service

One of the most critical features of the Router chain, once implemented, will be the inclusion of a
scheduling service that will allow for the automatic execution of specified contract functions without
the need for an external entity to trigger that event. To the best of our knowledge, no other blockchain
provides an inbuilt service for the time-based or condition-based triggering of contract functions without
needing a custom Web 2.0 service. Various use cases can be realized by leveraging this scheduler. For
example, a bridge contract on the Router chain listening to external price feeds can trigger a buy/sell
function if the price of the monitored token moves above or falls below a certain threshold.

7.5 Random Number Generator

In the past few years, randomness has proved to be a key ingredient in multiple Web 3.0 disciplines,
ranging from Play-to-Earn games to forms of gambling like prediction markets. Given the intricate
mathematics involved, a majority of these applications currently have to build their own randomness
source from the ground up, leading to additional overhead. To solve this problem, Router V2 will ship
with support for a [Random Number Generator (RNG), which is cryptographically secure and can be
easily integrated by any dApp on the Router chain. Since a [True RNG cannot be established on a
blockchain, we will devise a that will accept one or more initial values as input, perform
mathematical operations on it, and produce pseudo-random determinism sequences as output.

8 Concluding Remarks

As it is with other domains, users are all-important in Web 3.0. As more and more blockchains
come up, the user base gets fragmented across them. Even after much innovation in the blockchain
interoperability space, cross-chain applications have been unable to make the most of their potential
due to the issues plaguing the current crop of cross-chain solutions. Even though low latency, high
security, and complete decentralization are necessary conditions in a cross-chain infrastructure, they are
insufficient to combat the current problem. To get the most out of the current applications, what is
needed, it seems, is an infrastructure that allows applications to apply custom bridging logic. Towards
this end, in Router V2, we are leveraging the Router chain - a Cosmos-based blockchain with an
environment supporting the development and execution of CosmWasm smart contracts, as a hub-chain
to provide a highly customizable cross-chain infrastructure. This new infrastructure will enable a new
wave of dApps to take advantage of cross-chain composability.

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bi
tcoin.pdf, Dec 2008. Accessed: 2022-08-01.

[2] Hashlock. https://en.bitcoin.it/wiki/Hashlock, 2015.
[3] Timelock. https://en.bitcoin.it/wiki/Timelock, 2016.

[4] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A survey on blockchain
interoperability: Past, present, and future trends. arXiv preprint arXiv:2005.14282, 2020.

[5] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and William
Knottenbelt. Xclaim: Trustless, interoperable, cryptocurrency-backed assets. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 193-210, 2019.

31

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Hashlock
https://en.bitcoin.it/wiki/Timelock

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

HashHub Research. Explaining the structure and types of blockchain bridges. https://mirror
.xyz/0x8Df126302a7EA75E7013Ec8Ad6bFaC14DD84a5fF/CxabL18eGjr8y08VKELx9m61-y11
-h-0TT2z7SjNhuo, Feb 2022.

Rick Delaney. Blockchain bridges explained — how crosschain messaging protocols work. https:
//www.okx.com/academy/en/blockchain-bridges-explained-how-crosschain-messagi
ng-protocols-work#Decentralized-or-trust-minimized-bridges, Mar 2022.

Dmitriy Berenzon. Blockchain bridges: Building networks of cryptonetworks. https://medium.c
om/1kxnetwork/blockchain-bridges-5db6afac44f8, Sep 2021.

Léonard LYS, Arthur Micoulet, and Maria Potop-Butucaru. R-SWAP: Relay based atomic cross-
chain swap protocol. Research report, Sorbonne Université, April 2021.

Chainsafe Systems. Ethermint Documentation. https://docs.ethermint.zone/. Accessed:
2023-05-08.

Billy Rennekamp. Gravity Bridge. https://github.com/cosmos/gravity-bridge. Accessed:
2022-01-13.

Interchain Foundation. Secure P2P. https://docs.tendermint.com/v0.33/tendermint-cor
e/secure-p2p.html. Accessed: 2022-11-16.

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-
security signatures. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 124-142. Springer, 2011.

Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algorithm
(ecdsa). International journal of information security, 1(1):36—63, 2001.

Hyperlane Team. Sovereign Consensus. https://docs.hyperlane.xyz/docs/protocol/sov
ereign-consensus. Accessed: 2022-02-08.

32

https://mirror.xyz/0x8Df126302a7EA75E7013Ec8Ad6bFaC14DD84a5fF/Cxa5L18eGjr8y08VkELx9m61-yl1-h-oTT2z7SjNhuo
https://mirror.xyz/0x8Df126302a7EA75E7013Ec8Ad6bFaC14DD84a5fF/Cxa5L18eGjr8y08VkELx9m61-yl1-h-oTT2z7SjNhuo
https://mirror.xyz/0x8Df126302a7EA75E7013Ec8Ad6bFaC14DD84a5fF/Cxa5L18eGjr8y08VkELx9m61-yl1-h-oTT2z7SjNhuo
https://www.okx.com/academy/en/blockchain-bridges-explained-how-crosschain-messaging-protocols-work#Decentralized-or-trust-minimized-bridges
https://www.okx.com/academy/en/blockchain-bridges-explained-how-crosschain-messaging-protocols-work#Decentralized-or-trust-minimized-bridges
https://www.okx.com/academy/en/blockchain-bridges-explained-how-crosschain-messaging-protocols-work#Decentralized-or-trust-minimized-bridges
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://docs.ethermint.zone/
https://github.com/cosmos/gravity-bridge
https://docs.tendermint.com/v0.33/tendermint-core/secure-p2p.html
https://docs.tendermint.com/v0.33/tendermint-core/secure-p2p.html
https://docs.hyperlane.xyz/docs/protocol/sovereign-consensus
https://docs.hyperlane.xyz/docs/protocol/sovereign-consensus

Appendices

A Redelegation Mechanism for Failed Requests

When the Router chain tries to execute a request on the Router chain, the request may fail to execute
on the middleware contract for various reasons. As the corresponding source chain action has already
taken place, there should be a way to allow the applications to try and execute the failed request again.
The Router chain has a redelegation mechanism to enable this functionality for failed requests. Anyone
can trigger this mechanism by sending a redelegate transaction to the Router chain. However, unlike
the standard execution flow, the middleware contract won't pay the fee for executing the stuck request.
Instead, the sender of the redelegate transaction will have to pay the fee for executing the request
on the middleware contract.

B Batched Cross-chain NFT Minting via the Router Chain

Step 1: A user calls the NFT contract for a cross-chain mint and buy. The NFT contract takes the
funds from the user's account and deposits them in the contract. The amount of funds to be
taken is already set on the source contract based on the NFT minting price. The application
contract then calls the iSend() function on the Router Gateway contract with the relevant
parameters.

Step 2: The Router Gateway contract emits an event that is listened to by the orchestrators on the
Router chain.

Step 3: After validating the event and deducting the fee for the incoming request, the Router chain
passes the event to the application’s Router chain bridge contract.

Step 4: Upon receiving the cross-chain mint and buy request, the bridge contract will store the request
and increment the value of a counter by 1. Every time, after incrementing the counter, the
bridge contract will check if it has received the required number of requests (say V). If not,
it will do nothing further. If it has, the bridge contract will parse the payload of all the stored
requests into a single payload with all the user addresses and generate an outgoing request for
minting N NFTs on the destination chain.

Step 5: After the transaction initiated by the bridge contract is mined on the Router chain, the or-
chestrators verify the transaction’s corresponding outgoing request.

Step 6: Once verified, a relayer picks the request and forwards it to the Gateway contract on the
destination chain.

Step 7: The Gateway contract on the destination chain calls the NFT contract on the destination
chain.

Step 8: The NFT contract on the destination chain mints the NFTs on the destination chain to all
the user addresses specified in the payload.

33

	Introduction
	Background
	A Brief History of Router V1
	Router V1 Validation Mechanism
	Router V1 Challenges

	Intro to Router Chain
	Organization

	Existing Solutions
	Hash Time Locked Contracts (HTLCs)
	Proof of Authority (PoA) Bridges
	Light Client Node Approach
	Ultra Light Client Node with Oracle-based Bridge Adaptors
	Relays/Sidechains
	Optimistic Bridges
	Existing Chain-based Approaches

	Router Chain
	What is Router Chain?
	Characteristics
	Decentralized Trust-based
	Support for Middleware Contracts
	Router Chain as a Data Aggregation Layer
	Multilayer Security
	Flexibility
	Composability

	Workflow
	Generating and Sending a Cross-chain Request
	Generating and Sending an Acknowledgment

	Architectural Components
	Application Contracts
	Gateway Contracts
	Orchestrators
	Validator Set (Valset)
	Multichain Module
	Application-specific Bridge Contracts
	Token and Gas Price Oracles
	Relayers

	Network Security
	Infrastructure-level Security
	Bridge-level Security
	Application-level Security

	CrossTalk
	What is CrossTalk?
	Why is CrossTalk Required?
	CrossTalk Workflow
	Different Types of CrossTalk Requests

	Fee Management
	Fee Payer Considerations
	Gas Considerations
	Incoming Request Fee Structure
	Outgoing Request Fee Structure
	CrossTalk Fee Structure
	Other Fee Considerations
	Handling Refunds

	Features
	Cross-chain Meta Transactions
	Decentralized Cross-chain Read Requests
	Additional Security Modules
	Transaction Batching
	Batching at the Router Chain
	Batching at the Destination Chain

	Batch Atomicity
	MetaMask Compatibility

	Future Work
	Interoperability with Private Blockchains
	Providing Instant Finality for Transactions on Optimistic Blockchains
	Orchestrator Optimization using mpc
	Automated Triggers/Scheduler-as-a-Service
	Random Number Generator

	Concluding Remarks
	Appendices
	Redelegation Mechanism for Failed Requests
	Batched Cross-chain NFT Minting via the Router Chain

